CoConut: Co-Classification with Output Space Regularization

نویسندگان

  • Sameh Khamis
  • Christoph H. Lampert
چکیده

In this work we introduce a new approach to co-classification, i.e. the task of jointly classifying multiple, otherwise independent, data samples. The method we present, named CoConut, is based on the idea of adding a regularizer in the label space to encode certain priors on the resulting labelings. A regularizer that encourages labelings that are smooth across the test set, for instance, can be seen as a test-time variant of the cluster assumption, which has been proven useful at training time in semi-supervised learning. A regularizer that introduces a preference for certain class proportions can be regarded as a prior distribution on the class labels. CoConut can build on existing classifiers without making any assumptions on how they were obtained and without the need to re-train them. The use of a regularizer adds a new level of flexibility. It allows the integration of potentially new information at test time, even in other modalities than what the classifiers were trained on. We evaluate our framework on six datasets, reporting a clear performance gain in classification accuracy compared to the standard classification setup that predicts labels for each test sample separately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning

This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) framework for the problem of learning an unknown functional dependency between a structured input space and a structured output space. Our formulation encompasses both Vector-valued Manifold Regularization and Co-regularized Multi-view Learning, providing in particular a unifying framework linking these two imp...

متن کامل

Vector-valued Manifold Regularization

We consider the general problem of learning an unknown functional dependency, f : X !→ Y, between a structured input space X and a structured output space Y, from labeled and unlabeled examples. We formulate this problem in terms of data-dependent regularization in Vector-valued Reproducing Kernel Hilbert Spaces (Micchelli & Pontil, 2005) which elegantly extend familiar scalarvalued kernel meth...

متن کامل

Learning with Limited Supervision by Input and Output Coding

In many real-world applications of supervised learning, only a limited number of labeled examples are available because the cost of obtaining high-quality examples is high or the prediction task is very specific. Even with a relatively large number of labeled examples, the learning problem may still suffer from limited supervision as the dimensionality of the input space or the complexity of th...

متن کامل

A unifying framework for vector-valued manifold regularization and multi-view learning

This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) formulation for the problem of learning an unknown functional dependency between a structured input space and a structured output space, in the Semi-Supervised Learning setting. Our formulation includes as special cases Vector-valued Manifold Regularization and Multi-view Learning, thus provides in particular a...

متن کامل

Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps

Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014